Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive and Scalable Android Malware Detection through Online Learning (1606.07150v2)

Published 23 Jun 2016 in cs.CR and cs.LG

Abstract: It is well-known that malware constantly evolves so as to evade detection and this causes the entire malware population to be non-stationary. Contrary to this fact, prior works on machine learning based Android malware detection have assumed that the distribution of the observed malware characteristics (i.e., features) do not change over time. In this work, we address the problem of malware population drift and propose a novel online machine learning based framework, named DroidOL to handle it and effectively detect malware. In order to perform accurate detection, security-sensitive behaviors are captured from apps in the form of inter-procedural control-flow sub-graph features using a state-of-the-art graph kernel. In order to perform scalable detection and to adapt to the drift and evolution in malware population, an online passive-aggressive classifier is used. In a large-scale comparative analysis with more than 87,000 apps, DroidOL achieves 84.29% accuracy outperforming two state-of-the-art malware techniques by more than 20% in their typical batch learning setting and more than 3% when they are continuously re-trained. Our experimental findings strongly indicate that online learning based approaches are highly suitable for real-world malware detection.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.