Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

From NoSQL Accumulo to NewSQL Graphulo: Design and Utility of Graph Algorithms inside a BigTable Database (1606.07085v2)

Published 22 Jun 2016 in cs.DB, cs.DC, and cs.MS

Abstract: Google BigTable's scale-out design for distributed key-value storage inspired a generation of NoSQL databases. Recently the NewSQL paradigm emerged in response to analytic workloads that demand distributed computation local to data storage. Many such analytics take the form of graph algorithms, a trend that motivated the GraphBLAS initiative to standardize a set of matrix math kernels for building graph algorithms. In this article we show how it is possible to implement the GraphBLAS kernels in a BigTable database by presenting the design of Graphulo, a library for executing graph algorithms inside the Apache Accumulo database. We detail the Graphulo implementation of two graph algorithms and conduct experiments comparing their performance to two main-memory matrix math systems. Our results shed insight into the conditions that determine when executing a graph algorithm is faster inside a database versus an external system---in short, that memory requirements and relative I/O are critical factors.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.