Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finite Sample Prediction and Recovery Bounds for Ordinal Embedding (1606.07081v1)

Published 22 Jun 2016 in stat.ML and cs.LG

Abstract: The goal of ordinal embedding is to represent items as points in a low-dimensional Euclidean space given a set of constraints in the form of distance comparisons like "item $i$ is closer to item $j$ than item $k$". Ordinal constraints like this often come from human judgments. To account for errors and variation in judgments, we consider the noisy situation in which the given constraints are independently corrupted by reversing the correct constraint with some probability. This paper makes several new contributions to this problem. First, we derive prediction error bounds for ordinal embedding with noise by exploiting the fact that the rank of a distance matrix of points in $\mathbb{R}d$ is at most $d+2$. These bounds characterize how well a learned embedding predicts new comparative judgments. Second, we investigate the special case of a known noise model and study the Maximum Likelihood estimator. Third, knowledge of the noise model enables us to relate prediction errors to embedding accuracy. This relationship is highly non-trivial since we show that the linear map corresponding to distance comparisons is non-invertible, but there exists a nonlinear map that is invertible. Fourth, two new algorithms for ordinal embedding are proposed and evaluated in experiments.

Citations (69)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.