Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Finite Sample Prediction and Recovery Bounds for Ordinal Embedding (1606.07081v1)

Published 22 Jun 2016 in stat.ML and cs.LG

Abstract: The goal of ordinal embedding is to represent items as points in a low-dimensional Euclidean space given a set of constraints in the form of distance comparisons like "item $i$ is closer to item $j$ than item $k$". Ordinal constraints like this often come from human judgments. To account for errors and variation in judgments, we consider the noisy situation in which the given constraints are independently corrupted by reversing the correct constraint with some probability. This paper makes several new contributions to this problem. First, we derive prediction error bounds for ordinal embedding with noise by exploiting the fact that the rank of a distance matrix of points in $\mathbb{R}d$ is at most $d+2$. These bounds characterize how well a learned embedding predicts new comparative judgments. Second, we investigate the special case of a known noise model and study the Maximum Likelihood estimator. Third, knowledge of the noise model enables us to relate prediction errors to embedding accuracy. This relationship is highly non-trivial since we show that the linear map corresponding to distance comparisons is non-invertible, but there exists a nonlinear map that is invertible. Fourth, two new algorithms for ordinal embedding are proposed and evaluated in experiments.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.