Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using Word Embeddings in Twitter Election Classification (1606.07006v3)

Published 22 Jun 2016 in cs.IR and cs.CL

Abstract: Word embeddings and convolutional neural networks (CNN) have attracted extensive attention in various classification tasks for Twitter, e.g. sentiment classification. However, the effect of the configuration used to train and generate the word embeddings on the classification performance has not been studied in the existing literature. In this paper, using a Twitter election classification task that aims to detect election-related tweets, we investigate the impact of the background dataset used to train the embedding models, the context window size and the dimensionality of word embeddings on the classification performance. By comparing the classification results of two word embedding models, which are trained using different background corpora (e.g. Wikipedia articles and Twitter microposts), we show that the background data type should align with the Twitter classification dataset to achieve a better performance. Moreover, by evaluating the results of word embeddings models trained using various context window sizes and dimensionalities, we found that large context window and dimension sizes are preferable to improve the performance. Our experimental results also show that using word embeddings and CNN leads to statistically significant improvements over various baselines such as random, SVM with TF-IDF and SVM with word embeddings.

Citations (157)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube