Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Grouping the executables to detect malware with high accuracy (1606.06908v1)

Published 22 Jun 2016 in cs.CR and cs.AI

Abstract: The metamorphic malware variants with the same malicious behavior (family), can obfuscate themselves to look different from each other. This variation in structure leads to a huge signature database for traditional signature matching techniques to detect them. In order to effective and efficient detection of malware in large amounts of executables, we need to partition these files into groups which can identify their respective families. In addition, the grouping criteria should be chosen such a way that, it can also be applied to unknown files encounter on computers for classification. This paper discusses the study of malware and benign executables in groups to detect unknown malware with high accuracy. We studied sizes of malware generated by three popular second generation malware (metamorphic malware) creator kits viz. G2, PS-MPC and NGVCK, and observed that the size variation in any two generated malware from same kit is not much. Hence, we grouped the executables on the basis of malware sizes by using Optimal k-Means Clustering algorithm and used these obtained groups to select promising features for training (Random forest, J48, LMT, FT and NBT) classifiers to detect variants of malware or unknown malware. We find that detection of malware on the basis of their respected file sizes gives accuracy up to 99.11% from the classifiers.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube