Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Distributed Newton Method for Large Scale Consensus Optimization (1606.06593v1)

Published 21 Jun 2016 in cs.DC and math.OC

Abstract: In this paper, we propose a distributed Newton method for consensus optimization. Our approach outperforms state-of-the-art methods, including ADMM. The key idea is to exploit the sparsity of the dual Hessian and recast the computation of the Newton step as one of efficiently solving symmetric diagonally dominant linear equations. We validate our algorithm both theoretically and empirically. On the theory side, we demonstrate that our algorithm exhibits superlinear convergence within a neighborhood of optimality. Empirically, we show the superiority of this new method on a variety of machine learning problems. The proposed approach is scalable to very large problems and has a low communication overhead.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.