Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

All $α+uβ$-constacyclic codes of length $np^{s}$ over $\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}$ (1606.06428v1)

Published 21 Jun 2016 in cs.IT and math.IT

Abstract: Let $\mathbb{F}{p{m}}$ be a finite field with cardinality $p{m}$ and $R=\mathbb{F}{p{m}}+u\mathbb{F}_{p{m}}$ with $u{2}=0$. We aim to determine all $\alpha+u\beta$-constacyclic codes of length $np{s}$ over $R$, where $\alpha,\beta\in\mathbb{F}{p{m}}{*}$, $n, s\in\mathbb{N}{+}$ and $\gcd(n,p)=1$. Let $\alpha_{0}\in\mathbb{F}{p{m}}{*}$ and $\alpha{0}{p{s}}=\alpha$. The residue ring $R[x]/\langle x{np{s}}-\alpha-u\beta\rangle$ is a chain ring with the maximal ideal $\langle x{n}-\alpha_{0}\rangle$ in the case that $x{n}-\alpha_{0}$ is irreducible in $\mathbb{F}{p{m}}[x]$. If $x{n}-\alpha{0}$ is reducible in $\mathbb{F}_{p{m}}[x]$, we give the explicit expressions of the ideals of $R[x]/\langle x{np{s}}-\alpha-u\beta\rangle$. Besides, the number of codewords and the dual code of every $\alpha+u\beta$-constacyclic code are provided.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wei Zhao (309 papers)
  2. Xilin Tang (3 papers)
  3. Ze Gu (7 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.