All $α+uβ$-constacyclic codes of length $np^{s}$ over $\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}$ (1606.06428v1)
Abstract: Let $\mathbb{F}{p{m}}$ be a finite field with cardinality $p{m}$ and $R=\mathbb{F}{p{m}}+u\mathbb{F}_{p{m}}$ with $u{2}=0$. We aim to determine all $\alpha+u\beta$-constacyclic codes of length $np{s}$ over $R$, where $\alpha,\beta\in\mathbb{F}{p{m}}{*}$, $n, s\in\mathbb{N}{+}$ and $\gcd(n,p)=1$. Let $\alpha_{0}\in\mathbb{F}{p{m}}{*}$ and $\alpha{0}{p{s}}=\alpha$. The residue ring $R[x]/\langle x{np{s}}-\alpha-u\beta\rangle$ is a chain ring with the maximal ideal $\langle x{n}-\alpha_{0}\rangle$ in the case that $x{n}-\alpha_{0}$ is irreducible in $\mathbb{F}{p{m}}[x]$. If $x{n}-\alpha{0}$ is reducible in $\mathbb{F}_{p{m}}[x]$, we give the explicit expressions of the ideals of $R[x]/\langle x{np{s}}-\alpha-u\beta\rangle$. Besides, the number of codewords and the dual code of every $\alpha+u\beta$-constacyclic code are provided.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.