Papers
Topics
Authors
Recent
2000 character limit reached

FSMJ: Feature Selection with Maximum Jensen-Shannon Divergence for Text Categorization (1606.06366v1)

Published 20 Jun 2016 in stat.ML and cs.LG

Abstract: In this paper, we present a new wrapper feature selection approach based on Jensen-Shannon (JS) divergence, termed feature selection with maximum JS-divergence (FSMJ), for text categorization. Unlike most existing feature selection approaches, the proposed FSMJ approach is based on real-valued features which provide more information for discrimination than binary-valued features used in conventional approaches. We show that the FSMJ is a greedy approach and the JS-divergence monotonically increases when more features are selected. We conduct several experiments on real-life data sets, compared with the state-of-the-art feature selection approaches for text categorization. The superior performance of the proposed FSMJ approach demonstrates its effectiveness and further indicates its wide potential applications on data mining.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.