Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning in Games: Robustness of Fast Convergence (1606.06244v4)

Published 20 Jun 2016 in cs.GT and cs.LG

Abstract: We show that learning algorithms satisfying a $\textit{low approximate regret}$ property experience fast convergence to approximate optimality in a large class of repeated games. Our property, which simply requires that each learner has small regret compared to a $(1+\epsilon)$-multiplicative approximation to the best action in hindsight, is ubiquitous among learning algorithms; it is satisfied even by the vanilla Hedge forecaster. Our results improve upon recent work of Syrgkanis et al. [SALS15] in a number of ways. We require only that players observe payoffs under other players' realized actions, as opposed to expected payoffs. We further show that convergence occurs with high probability, and show convergence under bandit feedback. Finally, we improve upon the speed of convergence by a factor of $n$, the number of players. Both the scope of settings and the class of algorithms for which our analysis provides fast convergence are considerably broader than in previous work. Our framework applies to dynamic population games via a low approximate regret property for shifting experts. Here we strengthen the results of Lykouris et al. [LST16] in two ways: We allow players to select learning algorithms from a larger class, which includes a minor variant of the basic Hedge algorithm, and we increase the maximum churn in players for which approximate optimality is achieved. In the bandit setting we present a new algorithm which provides a "small loss"-type bound with improved dependence on the number of actions in utility settings, and is both simple and efficient. This result may be of independent interest.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com