Papers
Topics
Authors
Recent
2000 character limit reached

Slack and Margin Rescaling as Convex Extensions of Supermodular Functions (1606.05918v2)

Published 19 Jun 2016 in cs.LG and cs.DM

Abstract: Slack and margin rescaling are variants of the structured output SVM, which is frequently applied to problems in computer vision such as image segmentation, object localization, and learning parts based object models. They define convex surrogates to task specific loss functions, which, when specialized to non-additive loss functions for multi-label problems, yield extensions to increasing set functions. We demonstrate in this paper that we may use these concepts to define polynomial time convex extensions of arbitrary supermodular functions, providing an analysis framework for the tightness of these surrogates. This analysis framework shows that, while neither margin nor slack rescaling dominate the other, known bounds on supermodular functions can be used to derive extensions that dominate both of these, indicating possible directions for defining novel structured output prediction surrogates. In addition to the analysis of structured prediction loss functions, these results imply an approach to supermodular minimization in which margin rescaling is combined with non-polynomial time convex extensions to compute a sequence of LP relaxations reminiscent of a cutting plane method. This approach is applied to the problem of selecting representative exemplars from a set of images, validating our theoretical contributions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.