Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

You are Who You Know and How You Behave: Attribute Inference Attacks via Users' Social Friends and Behaviors (1606.05893v1)

Published 19 Jun 2016 in cs.SI and physics.soc-ph

Abstract: We propose new privacy attacks to infer attributes (e.g., locations, occupations, and interests) of online social network users. Our attacks leverage seemingly innocent user information that is publicly available in online social networks to infer missing attributes of targeted users. Given the increasing availability of (seemingly innocent) user information online, our results have serious implications for Internet privacy -- private attributes can be inferred from users' publicly available data unless we take steps to protect users from such inference attacks. To infer attributes of a targeted user, existing inference attacks leverage either the user's publicly available social friends or the user's behavioral records (e.g., the webpages that the user has liked on Facebook, the apps that the user has reviewed on Google Play), but not both. As we will show, such inference attacks achieve limited success rates. However, the problem becomes qualitatively different if we consider both social friends and behavioral records. To address this challenge, we develop a novel model to integrate social friends and behavioral records and design new attacks based on our model. We theoretically and experimentally demonstrate the effectiveness of our attacks. For instance, we observe that, in a real-world large-scale dataset with 1.1 million users, our attack can correctly infer the cities a user lived in for 57% of the users, via confidence estimation, we are able to increase the attack success rate to over 90% if the attacker selectively attacks a half of the users. Moreover, we show that our attack can correctly infer attributes for significantly more users than previous attacks.

Citations (133)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.