Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Efficient Large-scale Semi-supervised Multi-label Classifier Capable of Handling Missing labels (1606.05725v1)

Published 18 Jun 2016 in cs.LG, cs.AI, and stat.ML

Abstract: Multi-label classification has received considerable interest in recent years. Multi-label classifiers have to address many problems including: handling large-scale datasets with many instances and a large set of labels, compensating missing label assignments in the training set, considering correlations between labels, as well as exploiting unlabeled data to improve prediction performance. To tackle datasets with a large set of labels, embedding-based methods have been proposed which seek to represent the label assignments in a low-dimensional space. Many state-of-the-art embedding-based methods use a linear dimensionality reduction to represent the label assignments in a low-dimensional space. However, by doing so, these methods actually neglect the tail labels - labels that are infrequently assigned to instances. We propose an embedding-based method that non-linearly embeds the label vectors using an stochastic approach, thereby predicting the tail labels more accurately. Moreover, the proposed method have excellent mechanisms for handling missing labels, dealing with large-scale datasets, as well as exploiting unlabeled data. With the best of our knowledge, our proposed method is the first multi-label classifier that simultaneously addresses all of the mentioned challenges. Experiments on real-world datasets show that our method outperforms stateof-the-art multi-label classifiers by a large margin, in terms of prediction performance, as well as training time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.