Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Increasing the Interpretability of Recurrent Neural Networks Using Hidden Markov Models (1606.05320v2)

Published 16 Jun 2016 in stat.ML, cs.CL, and cs.LG

Abstract: As deep neural networks continue to revolutionize various application domains, there is increasing interest in making these powerful models more understandable and interpretable, and narrowing down the causes of good and bad predictions. We focus on recurrent neural networks (RNNs), state of the art models in speech recognition and translation. Our approach to increasing interpretability is by combining an RNN with a hidden Markov model (HMM), a simpler and more transparent model. We explore various combinations of RNNs and HMMs: an HMM trained on LSTM states; a hybrid model where an HMM is trained first, then a small LSTM is given HMM state distributions and trained to fill in gaps in the HMM's performance; and a jointly trained hybrid model. We find that the LSTM and HMM learn complementary information about the features in the text.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.