Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Increasing the Interpretability of Recurrent Neural Networks Using Hidden Markov Models (1606.05320v2)

Published 16 Jun 2016 in stat.ML, cs.CL, and cs.LG

Abstract: As deep neural networks continue to revolutionize various application domains, there is increasing interest in making these powerful models more understandable and interpretable, and narrowing down the causes of good and bad predictions. We focus on recurrent neural networks (RNNs), state of the art models in speech recognition and translation. Our approach to increasing interpretability is by combining an RNN with a hidden Markov model (HMM), a simpler and more transparent model. We explore various combinations of RNNs and HMMs: an HMM trained on LSTM states; a hybrid model where an HMM is trained first, then a small LSTM is given HMM state distributions and trained to fill in gaps in the HMM's performance; and a jointly trained hybrid model. We find that the LSTM and HMM learn complementary information about the features in the text.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Viktoriya Krakovna (4 papers)
  2. Finale Doshi-Velez (134 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.