Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scalable Partial Least Squares Regression on Grammar-Compressed Data Matrices (1606.05031v1)

Published 16 Jun 2016 in cs.DS

Abstract: With massive high-dimensional data now commonplace in research and industry, there is a strong and growing demand for more scalable computational techniques for data analysis and knowledge discovery. Key to turning these data into knowledge is the ability to learn statistical models with high interpretability. Current methods for learning statistical models either produce models that are not interpretable or have prohibitive computational costs when applied to massive data. In this paper we address this need by presenting a scalable algorithm for partial least squares regression (PLS), which we call compression-based PLS (cPLS), to learn predictive linear models with a high interpretability from massive high-dimensional data. We propose a novel grammar-compressed representation of data matrices that supports fast row and column access while the data matrix is in a compressed form. The original data matrix is grammar-compressed and then the linear model in PLS is learned on the compressed data matrix, which results in a significant reduction in working space, greatly improving scalability. We experimentally test cPLS on its ability to learn linear models for classification, regression and feature extraction with various massive high-dimensional data, and show that cPLS performs superiorly in terms of prediction accuracy, computational efficiency, and interpretability.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube