Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Signaling equilibria for dynamic LQG games with asymmetric information (1606.04960v1)

Published 15 Jun 2016 in cs.GT and cs.SY

Abstract: We consider a finite horizon dynamic game with two players who observe their types privately and take actions, which are publicly observed. Players' types evolve as independent, controlled linear Gaussian processes and players incur quadratic instantaneous costs. This forms a dynamic linear quadratic Gaussian (LQG) game with asymmetric information. We show that under certain conditions, players' strategies that are linear in their private types, together with Gaussian beliefs form a perfect Bayesian equilibrium (PBE) of the game. Furthermore, it is shown that this is a signaling equilibrium due to the fact that future beliefs on players' types are affected by the equilibrium strategies. We provide a backward-forward algorithm to find the PBE. Each step of the backward algorithm reduces to solving an algebraic matrix equation for every possible realization of the state estimate covariance matrix. The forward algorithm consists of Kalman filter recursions, where state estimate covariance matrices depend on equilibrium strategies.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.