Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Designing a Human-Machine Hybrid Computing System for Unstructured Data Analytics (1606.04929v1)

Published 15 Jun 2016 in cs.HC

Abstract: Current machine algorithms for analysis of unstructured data typically show low accuracies due to the need for human-like intelligence. Conversely, though humans are much better than machine algorithms on analyzing unstructured data, they are unpredictable, slower and can be erroneous or even malicious as computing agents. Therefore, a hybrid platform that can intelligently orchestrate machine and human computing resources would potentially be capable of providing significantly better benefits compared to either type of computing agent in isolation. In this paper, we propose a new hybrid human-machine computing platform with integrated service level objectives (SLO) management for complex tasks that can be decomposed into a dependency graph where nodes represent subtasks. Initial experimental results are highly encouraging. To the best of our knowledge, ours is the first work that attempts to design such a hybrid human-machine computing platform with support for addressing the three SLO parameters of accuracy, budget and completion time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.