Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Modal Hybrid Deep Neural Network for Speech Enhancement (1606.04750v1)

Published 15 Jun 2016 in cs.LG, cs.NE, and cs.SD

Abstract: Deep Neural Networks (DNN) have been successful in en- hancing noisy speech signals. Enhancement is achieved by learning a nonlinear mapping function from the features of the corrupted speech signal to that of the reference clean speech signal. The quality of predicted features can be improved by providing additional side channel information that is robust to noise, such as visual cues. In this paper we propose a novel deep learning model inspired by insights from human audio visual perception. In the proposed unified hybrid architecture, features from a Convolution Neural Network (CNN) that processes the visual cues and features from a fully connected DNN that processes the audio signal are integrated using a Bidirectional Long Short-Term Memory (BiLSTM) network. The parameters of the hybrid model are jointly learned using backpropagation. We compare the quality of enhanced speech from the hybrid models with those from traditional DNN and BiLSTM models.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.