Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Strong Converse Theorems for Multimessage Networks with Tight Cut-Set Bound (1606.04678v4)

Published 15 Jun 2016 in cs.IT and math.IT

Abstract: This paper considers a multimessage network where each node may send a message to any other node in the network. Under the discrete memoryless model, we prove the strong converse theorem for any network whose cut-set bound is tight, i.e., achievable. Our result implies that for any fixed rate vector that resides outside the capacity region, the average error probabilities of any sequence of length-$n$ codes operated at the rate vector must tend to $1$ as $n$ approaches infinity. The proof is based on the method of types and is inspired by the work of Csisz\'{a}r and K\"{o}rner in 1982 which fully characterized the reliability function of any discrete memoryless channel (DMC) with feedback for rates above capacity. In addition, we generalize the strong converse theorem to the Gaussian model where each node is subject to an almost-sure power constraint. Important consequences of our results are new strong converses for the Gaussian multiple access channel (MAC) with feedback and the following relay channels under both models: The degraded relay channel (RC), the RC with orthogonal sender components, and the general RC with feedback.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.