Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Word Representation Models for Morphologically Rich Languages in Neural Machine Translation (1606.04217v1)

Published 14 Jun 2016 in cs.NE and cs.CL

Abstract: Dealing with the complex word forms in morphologically rich languages is an open problem in language processing, and is particularly important in translation. In contrast to most modern neural systems of translation, which discard the identity for rare words, in this paper we propose several architectures for learning word representations from character and morpheme level word decompositions. We incorporate these representations in a novel machine translation model which jointly learns word alignments and translations via a hard attention mechanism. Evaluating on translating from several morphologically rich languages into English, we show consistent improvements over strong baseline methods, of between 1 and 1.5 BLEU points.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.