Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Drawing Planar Graphs with Many Collinear Vertices (1606.03890v4)

Published 13 Jun 2016 in cs.CG and math.CO

Abstract: Consider the following problem: Given a planar graph $G$, what is the maximum number $p$ such that $G$ has a planar straight-line drawing with $p$ collinear vertices? This problem resides at the core of several graph drawing problems, including universal point subsets, untangling, and column planarity. The following results are known for it: Every $n$-vertex planar graph has a planar straight-line drawing with $\Omega(\sqrt{n})$ collinear vertices; for every $n$, there is an $n$-vertex planar graph whose every planar straight-line drawing has $O(n\sigma)$ collinear vertices, where $\sigma<0.986$; every $n$-vertex planar graph of treewidth at most two has a planar straight-line drawing with $\Theta(n)$ collinear vertices. We extend the linear bound to planar graphs of treewidth at most three and to triconnected cubic planar graphs. This (partially) answers two open problems posed by Ravsky and Verbitsky [WG 2011:295--306]. Similar results are not possible for all bounded treewidth planar graphs or for all bounded degree planar graphs. For planar graphs of treewidth at most three, our results also imply asymptotically tight bounds for all of the other above mentioned graph drawing problems.

Citations (17)

Summary

We haven't generated a summary for this paper yet.