Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Addressing Limited Data for Textual Entailment Across Domains (1606.02638v1)

Published 8 Jun 2016 in cs.CL

Abstract: We seek to address the lack of labeled data (and high cost of annotation) for textual entailment in some domains. To that end, we first create (for experimental purposes) an entailment dataset for the clinical domain, and a highly competitive supervised entailment system, ENT, that is effective (out of the box) on two domains. We then explore self-training and active learning strategies to address the lack of labeled data. With self-training, we successfully exploit unlabeled data to improve over ENT by 15% F-score on the newswire domain, and 13% F-score on clinical data. On the other hand, our active learning experiments demonstrate that we can match (and even beat) ENT using only 6.6% of the training data in the clinical domain, and only 5.8% of the training data in the newswire domain.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.