Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Random Access in C-RAN for User Activity Detection with Limited-Capacity Fronthaul (1606.02337v2)

Published 7 Jun 2016 in cs.IT, cs.NI, and math.IT

Abstract: Cloud-Radio Access Network (C-RAN) is characterized by a hierarchical structure in which the baseband processing functionalities of remote radio heads (RRHs) are implemented by means of cloud computing at a Central Unit (CU). A key limitation of C-RANs is given by the capacity constraints of the fronthaul links connecting RRHs to the CU. In this letter, the impact of this architectural constraint is investigated for the fundamental functions of random access and active User Equipment (UE) identification in the presence of a potentially massive number of UEs. In particular, the standard C-RAN approach based on quantize-and-forward and centralized detection is compared to a scheme based on an alternative CU-RRH functional split that enables local detection. Both techniques leverage Bayesian sparse detection. Numerical results illustrate the relative merits of the two schemes as a function of the system parameters.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.