Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Selective Unsupervised Feature Learning with Convolutional Neural Network (S-CNN) (1606.02210v1)

Published 7 Jun 2016 in cs.CV

Abstract: Supervised learning of convolutional neural networks (CNNs) can require very large amounts of labeled data. Labeling thousands or millions of training examples can be extremely time consuming and costly. One direction towards addressing this problem is to create features from unlabeled data. In this paper we propose a new method for training a CNN, with no need for labeled instances. This method for unsupervised feature learning is then successfully applied to a challenging object recognition task. The proposed algorithm is relatively simple, but attains accuracy comparable to that of more sophisticated methods. The proposed method is significantly easier to train, compared to existing CNN methods, making fewer requirements on manually labeled training data. It is also shown to be resistant to overfitting. We provide results on some well-known datasets, namely STL-10, CIFAR-10, and CIFAR-100. The results show that our method provides competitive performance compared with existing alternative methods. Selective Convolutional Neural Network (S-CNN) is a simple and fast algorithm, it introduces a new way to do unsupervised feature learning, and it provides discriminative features which generalize well.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube