Papers
Topics
Authors
Recent
2000 character limit reached

A Minimax Approach to Supervised Learning (1606.02206v5)

Published 7 Jun 2016 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: Given a task of predicting $Y$ from $X$, a loss function $L$, and a set of probability distributions $\Gamma$ on $(X,Y)$, what is the optimal decision rule minimizing the worst-case expected loss over $\Gamma$? In this paper, we address this question by introducing a generalization of the principle of maximum entropy. Applying this principle to sets of distributions with marginal on $X$ constrained to be the empirical marginal from the data, we develop a general minimax approach for supervised learning problems. While for some loss functions such as squared-error and log loss, the minimax approach rederives well-knwon regression models, for the 0-1 loss it results in a new linear classifier which we call the maximum entropy machine. The maximum entropy machine minimizes the worst-case 0-1 loss over the structured set of distribution, and by our numerical experiments can outperform other well-known linear classifiers such as SVM. We also prove a bound on the generalization worst-case error in the minimax approach.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.