Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Supervised Syntax-based Alignment between English Sentences and Abstract Meaning Representation Graphs (1606.02126v4)

Published 7 Jun 2016 in cs.CL

Abstract: As alignment links are not given between English sentences and Abstract Meaning Representation (AMR) graphs in the AMR annotation, automatic alignment becomes indispensable for training an AMR parser. Previous studies formalize it as a string-to-string problem and solve it in an unsupervised way, which suffers from data sparseness due to the small size of training data for English-AMR alignment. In this paper, we formalize it as a syntax-based alignment problem and solve it in a supervised manner based on syntax trees, which can address the data sparseness problem by generalizing English-AMR tokens to syntax tags. Experiments verify the effectiveness of the proposed method not only for English-AMR alignment, but also for AMR parsing.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.