Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Walking on the Edge and Cosystolic Expansion (1606.01844v1)

Published 6 Jun 2016 in cs.CC and math.CO

Abstract: Random walks on regular bounded degree expander graphs have numerous applications. A key property of these walks is that they converge rapidly to the uniform distribution on the vertices. The recent study of expansion of high dimensional simplicial complexes, which are the high dimensional analogues of graphs, calls for the natural generalization of random walks to higher dimensions. In particular, a high order random walk on a $2$-dimensional simplicial complex moves at random between neighboring edges of the complex, where two edges are considered neighbors if they share a common triangle. We show that if a regular $2$-dimensional simplicial complex is a cosystolic expander and the underlying graph of the complex has a spectral gap larger than $1/2$, then the random walk on the edges of the complex converges rapidly to the uniform distribution on the edges.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)