Papers
Topics
Authors
Recent
2000 character limit reached

Predicting Performance Under Stressful Conditions Using Galvanic Skin Response (1606.01836v1)

Published 6 Jun 2016 in stat.AP and cs.HC

Abstract: The rapid growth of the availability of wearable biosensors has created the opportunity for using biological signals to measure worker performance. An important question is how to use such signals to not just measure, but actually predict worker performance on a task under stressful and potentially high risk conditions. Here we show that the biological signal known as galvanic skin response (GSR) allows such a prediction. We conduct an experiment where subjects answer arithmetic questions under low and high stress conditions while having their GSR monitored using a wearable biosensor. Using only the GSR measured under low stress conditions, we are able to predict which subjects will perform well under high stress conditions, achieving an area under the curve (AUC) of 0.76. If we try to make similar predictions without using any biometric signals, the AUC barely exceeds 0.50. Our result suggests that performance in high stress conditions can be predicted using signals obtained from wearable biosensors in low stress conditions.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.