Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Weighted $\ell_1$-Minimization for Sparse Recovery under Arbitrary Prior Information (1606.01295v2)

Published 3 Jun 2016 in cs.IT and math.IT

Abstract: Weighted $\ell_1$-minimization has been studied as a technique for the reconstruction of a sparse signal from compressively sampled measurements when prior information about the signal, in the form of a support estimate, is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted $\ell_1$-minimization when arbitrarily many distinct weights are permitted. For example, such a setup might be used when one has multiple estimates for the support of a signal, and these estimates have varying degrees of accuracy. Our analysis yields an extension to existing works that assume only a single support estimate set upon which a constant weight is applied. We include numerical experiments, with both synthetic signals and real video data, that demonstrate the benefits of allowing non-uniform weights in the reconstruction procedure.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.