Dependency Parsing as Head Selection (1606.01280v4)
Abstract: Conventional graph-based dependency parsers guarantee a tree structure both during training and inference. Instead, we formalize dependency parsing as the problem of independently selecting the head of each word in a sentence. Our model which we call \textsc{DeNSe} (as shorthand for {\bf De}pendency {\bf N}eural {\bf Se}lection) produces a distribution over possible heads for each word using features obtained from a bidirectional recurrent neural network. Without enforcing structural constraints during training, \textsc{DeNSe} generates (at inference time) trees for the overwhelming majority of sentences, while non-tree outputs can be adjusted with a maximum spanning tree algorithm. We evaluate \textsc{DeNSe} on four languages (English, Chinese, Czech, and German) with varying degrees of non-projectivity. Despite the simplicity of the approach, our parsers are on par with the state of the art.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.