Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Temporal flows in Temporal networks (1606.01091v2)

Published 3 Jun 2016 in cs.DS and cs.CC

Abstract: We introduce temporal flows on temporal networks, i.e., networks the links of which exist only at certain moments of time. Such networks are ephemeral in the sense that no link exists after some time. Our flow model is new and differs from the "flows over time" model, also called "dynamic flows" in the literature. We show that the problem of finding the maximum amount of flow that can pass from a source vertex s to a sink vertex t up to a given time is solvable in Polynomial time, even when node buffers are bounded. We then examine mainly the case of unbounded node buffers. We provide a simplified static Time-Extended network (STEG), which is of polynomial size to the input and whose static flow rates are equivalent to the respective temporal flow of the temporal network, using STEG, we prove that the maximum temporal flow is equal to the minimum temporal s-t cut. We further show that temporal flows can always be decomposed into flows, each of which moves only through a journey, i.e., a directed path whose successive edges have strictly increasing moments of existence. We partially characterise networks with random edge availabilities that tend to eliminate the s-t temporal flow. We then consider mixed temporal networks, which have some edges with specified availabilities and some edges with random availabilities, we show that it is #P-hard to compute the tails and expectations of the maximum temporal flow (which is now a random variable) in a mixed temporal network.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.