Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Graph Clustering with Density-Cut (1606.00950v1)

Published 3 Jun 2016 in cs.SI and physics.soc-ph

Abstract: How can we find a good graph clustering of a real-world network, that allows insight into its underlying structure and also potential functions? In this paper, we introduce a new graph clustering algorithm Dcut from a density point of view. The basic idea is to envision the graph clustering as a density-cut problem, such that the vertices in the same cluster are densely connected and the vertices between clusters are sparsely connected. To identify meaningful clusters (communities) in a graph, a density-connected tree is first constructed in a local fashion. Owing to the density-connected tree, Dcut allows partitioning a graph into multiple densely tight-knit clusters directly. We demonstrate that our method has several attractive benefits: (a) Dcut provides an intuitive criterion to evaluate the goodness of a graph clustering in a more natural and precise way; (b) Built upon the density-connected tree, Dcut allows identifying the meaningful graph clusters of densely connected vertices efficiently; (c) The density-connected tree provides a connectivity map of vertices in a graph from a local density perspective. We systematically evaluate our new clustering approach on synthetic as well as real data to demonstrate its good performance.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.