Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A note on reductions between compressed sensing guarantees (1606.00757v2)

Published 2 Jun 2016 in cs.IT, cs.DS, and math.IT

Abstract: In compressed sensing, one wishes to acquire an approximately sparse high-dimensional signal $x\in\mathbb{R}n$ via $m\ll n$ noisy linear measurements, then later approximately recover $x$ given only those measurement outcomes. Various guarantees have been studied in terms of the notion of approximation in recovery, and some isolated folklore results are known stating that some forms of recovery are stronger than others, via black-box reductions. In this note we provide a general theorem concerning the hierarchy of strengths of various recovery guarantees. As a corollary of this theorem, by reducing from well-known results in the compressed sensing literature, we obtain an efficient $\ell_p/\ell_p$ scheme for any $0<p<1$ with the fewest number of measurements currently known amongst efficient schemes, improving recent bounds of [SomaY16].

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube