Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-Guided Banding of the Covariance Matrix (1606.00451v2)

Published 1 Jun 2016 in stat.ME, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: Regularization has become a primary tool for developing reliable estimators of the covariance matrix in high-dimensional settings. To curb the curse of dimensionality, numerous methods assume that the population covariance (or inverse covariance) matrix is sparse, while making no particular structural assumptions on the desired pattern of sparsity. A highly-related, yet complementary, literature studies the specific setting in which the measured variables have a known ordering, in which case a banded population matrix is often assumed. While the banded approach is conceptually and computationally easier than asking for "patternless sparsity," it is only applicable in very specific situations (such as when data are measured over time or one-dimensional space). This work proposes a generalization of the notion of bandedness that greatly expands the range of problems in which banded estimators apply. We develop convex regularizers occupying the broad middle ground between the former approach of "patternless sparsity" and the latter reliance on having a known ordering. Our framework defines bandedness with respect to a known graph on the measured variables. Such a graph is available in diverse situations, and we provide a theoretical, computational, and applied treatment of two new estimators. An R package, called ggb, implements these new methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.