Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How to advance general game playing artificial intelligence by player modelling (1606.00401v3)

Published 1 Jun 2016 in cs.HC and cs.AI

Abstract: General game playing artificial intelligence has recently seen important advances due to the various techniques known as 'deep learning'. However the advances conceal equally important limitations in their reliance on: massive data sets; fortuitously constructed problems; and absence of any human-level complexity, including other human opponents. On the other hand, deep learning systems which do beat human champions, such as in Go, do not generalise well. The power of deep learning simultaneously exposes its weakness. Given that deep learning is mostly clever reconfigurations of well-established methods, moving beyond the state of art calls for forward-thinking visionary solutions, not just more of the same. I present the argument that general game playing artificial intelligence will require a generalised player model. This is because games are inherently human artefacts which therefore, as a class of problems, contain cases which require a human-style problem solving approach. I relate this argument to the performance of state of art general game playing agents. I then describe a concept for a formal category theoretic basis to a generalised player model. This formal model approach integrates my existing 'Behavlets' method for psychologically-derived player modelling: Cowley, B., Charles, D. (2016). Behavlets: a Method for Practical Player Modelling using Psychology-Based Player Traits and Domain Specific Features. User Modeling and User-Adapted Interaction, 26(2), 257-306.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube