Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Conversational Contextual Cues: The Case of Personalization and History for Response Ranking (1606.00372v1)

Published 1 Jun 2016 in cs.CL and cs.LG

Abstract: We investigate the task of modeling open-domain, multi-turn, unstructured, multi-participant, conversational dialogue. We specifically study the effect of incorporating different elements of the conversation. Unlike previous efforts, which focused on modeling messages and responses, we extend the modeling to long context and participant's history. Our system does not rely on handwritten rules or engineered features; instead, we train deep neural networks on a large conversational dataset. In particular, we exploit the structure of Reddit comments and posts to extract 2.1 billion messages and 133 million conversations. We evaluate our models on the task of predicting the next response in a conversation, and we find that modeling both context and participants improves prediction accuracy.

Citations (90)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.