Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Decoding Emotional Experience through Physiological Signal Processing (1606.00370v1)

Published 1 Jun 2016 in cs.HC and cs.LG

Abstract: There is an increasing consensus among re- searchers that making a computer emotionally intelligent with the ability to decode human affective states would allow a more meaningful and natural way of human-computer interactions (HCIs). One unobtrusive and non-invasive way of recognizing human affective states entails the exploration of how physiological signals vary under different emotional experiences. In particular, this paper explores the correlation between autonomically-mediated changes in multimodal body signals and discrete emotional states. In order to fully exploit the information in each modality, we have provided an innovative classification approach for three specific physiological signals including Electromyogram (EMG), Blood Volume Pressure (BVP) and Galvanic Skin Response (GSR). These signals are analyzed as inputs to an emotion recognition paradigm based on fusion of a series of weak learners. Our proposed classification approach showed 88.1% recognition accuracy, which outperformed the conventional Support Vector Machine (SVM) classifier with 17% accuracy improvement. Furthermore, in order to avoid information redundancy and the resultant over-fitting, a feature reduction method is proposed based on a correlation analysis to optimize the number of features required for training and validating each weak learner. Results showed that despite the feature space dimensionality reduction from 27 to 18 features, our methodology preserved the recognition accuracy of about 85.0%. This reduction in complexity will get us one step closer towards embedding this human emotion encoder in the wireless and wearable HCI platforms.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.