Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Two-Way Visibly Pushdown Automata and Transducers (1606.00234v1)

Published 1 Jun 2016 in cs.FL

Abstract: Automata-logic connections are pillars of the theory of regular languages. Such connections are harder to obtain for transducers, but important results have been obtained recently for word-to-word transformations, showing that the three following models are equivalent: deterministic two-way transducers, monadic second-order (MSO) transducers, and deterministic one-way automata equipped with a finite number of registers. Nested words are words with a nesting structure, allowing to model unranked trees as their depth-first-search linearisations. In this paper, we consider transformations from nested words to words, allowing in particular to produce unranked trees if output words have a nesting structure. The model of visibly pushdown transducers allows to describe such transformations, and we propose a simple deterministic extension of this model with two-way moves that has the following properties: i) it is a simple computational model, that naturally has a good evaluation complexity; ii) it is expressive: it subsumes nested word-to-word MSO transducers, and the exact expressiveness of MSO transducers is recovered using a simple syntactic restriction; iii) it has good algorithmic/closure properties: the model is closed under composition with a unambiguous one-way letter-to-letter transducer which gives closure under regular look-around, and has a decidable equivalence problem.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube