Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Gene-Gene association for Imaging Genetics Data using Robust Kernel Canonical Correlation Analysis (1606.00118v1)

Published 1 Jun 2016 in stat.ML

Abstract: In genome-wide interaction studies, to detect gene-gene interactions, most methods are divided into two folds: single nucleotide polymorphisms (SNP) based and gene-based methods. Basically, the methods based on the gene are more effective than the methods based on a single SNP. Recent years, while the kernel canonical correlation analysis (Classical kernel CCA) based U statistic (KCCU) has proposed to detect the nonlinear relationship between genes. To estimate the variance in KCCU, they have used resampling based methods which are highly computationally intensive. In addition, classical kernel CCA is not robust to contaminated data. We, therefore, first discuss robust kernel mean element, the robust kernel covariance, and cross-covariance operators. Second, we propose a method based on influence function to estimate the variance of the KCCU. Third, we propose a nonparametric robust KCCU method based on robust kernel CCA, which is designed for contaminated data and less sensitive to noise than classical kernel CCA. Finally, we investigate the proposed methods to synthesized data and imaging genetic data set. Based on gene ontology and pathway analysis, the synthesized and genetics analysis demonstrate that the proposed robust method shows the superior performance of the state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.