Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse Bayesian Inference of Multivariable ARX Networks (1605.09543v2)

Published 31 May 2016 in cs.SY

Abstract: Increasing attention has recently been given to the inference of sparse networks. In biology, for example, most molecules only bind to a small number of other molecules, leading to sparse molecular interaction networks. To achieve sparseness, a common approach consists of applying weighted penalties to the number of links between nodes in the network and the complexity of the dynamics of existing links. The selection of proper weights, however, is non-trivial. Alternatively, this paper proposes a novel data-driven method, called GESBL, that is able to penalise both network sparsity and model complexity without any tuning. GESBL combines Sparse Bayesian Learning (SBL) and Group Sparse Bayesian Learning (GSBL) to introduce penalties for complexity, both in terms of element (system order of nonzero connections) and group sparsity (network topology). The paper considers a class of sparse linear time-invariant networks where the dynamics are represented by multivariable ARX models. Data generated from sparse random ARX networks and synthetic gene regulatory networks indicate that our method, on average, considerably outperforms existing state-of-the-art methods. The proposed method can be applied to a wide range of fields, from systems biology applications in signalling and genetic regulatory networks to power systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.