Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Biconvex Relaxation for Semidefinite Programming in Computer Vision (1605.09527v2)

Published 31 May 2016 in cs.CV, cs.NA, math.NA, and math.OC

Abstract: Semidefinite programming is an indispensable tool in computer vision, but general-purpose solvers for semidefinite programs are often too slow and memory intensive for large-scale problems. We propose a general framework to approximately solve large-scale semidefinite problems (SDPs) at low complexity. Our approach, referred to as biconvex relaxation (BCR), transforms a general SDP into a specific biconvex optimization problem, which can then be solved in the original, low-dimensional variable space at low complexity. The resulting biconvex problem is solved using an efficient alternating minimization (AM) procedure. Since AM has the potential to get stuck in local minima, we propose a general initialization scheme that enables BCR to start close to a global optimum - this is key for our algorithm to quickly converge to optimal or near-optimal solutions. We showcase the efficacy of our approach on three applications in computer vision, namely segmentation, co-segmentation, and manifold metric learning. BCR achieves solution quality comparable to state-of-the-art SDP methods with speedups between 4X and 35X. At the same time, BCR handles a more general set of SDPs than previous approaches, which are more specialized.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.