Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust Beamforming in Cache-Enabled Cloud Radio Access Networks (1605.09321v3)

Published 30 May 2016 in cs.IT and math.IT

Abstract: Popular content caching is expected to play a major role in efficiently reducing backhaul congestion and achieving user satisfaction in next generation mobile radio systems. Consider the downlink of a cache-enabled cloud radio access network (CRAN), where each cache-enabled base station (BS) is equipped with limited-size local cache storage. The central computing unit (cloud) is connected to the BSs via a limited capacity backhaul link and serves a set of single-antenna mobile users (MUs). This paper assumes that only imperfect channel state information (CSI) is available at the cloud. It focuses on the problem of minimizing the total network power and backhaul cost so as to determine the beamforming vector of each user across the network, the quantization noise covariance matrix, and the BS clustering subject to imperfect channel state information and fixed cache placement assumptions. The paper suggests solving such a difficult, non-convex optimization problem using the semidefinite relaxation (SDR). The paper then uses the $\ell_0$-norm approximation to provide a feasible, sub-optimal solution using the majorization-minimization (MM) approach. Simulation results particularly show how the cache-enabled network significantly improves the backhaul cost especially at high signal-to-interference-plus-noise ratio (SINR) values as compared to conventional cache-less CRANs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.