Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Stochastic Function Norm Regularization of Deep Networks (1605.09085v3)

Published 30 May 2016 in cs.LG, cs.CV, and stat.ML

Abstract: Deep neural networks have had an enormous impact on image analysis. State-of-the-art training methods, based on weight decay and DropOut, result in impressive performance when a very large training set is available. However, they tend to have large problems overfitting to small data sets. Indeed, the available regularization methods deal with the complexity of the network function only indirectly. In this paper, we study the feasibility of directly using the $L_2$ function norm for regularization. Two methods to integrate this new regularization in the stochastic backpropagation are proposed. Moreover, the convergence of these new algorithms is studied. We finally show that they outperform the state-of-the-art methods in the low sample regime on benchmark datasets (MNIST and CIFAR10). The obtained results demonstrate very clear improvement, especially in the context of small sample regimes with data laying in a low dimensional manifold. Source code of the method can be found at \url{https://github.com/AmalRT/DNN_Reg}.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.