Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Improving Crowdsourced Live Streaming with Aggregated Edge Networks (1605.08969v1)

Published 29 May 2016 in cs.MM

Abstract: Recent years have witnessed a dramatic increase of user-generated video services. In such user-generated video services, crowdsourced live streaming (e.g., Periscope, Twitch) has significantly challenged today's edge network infrastructure: today's edge networks (e.g., 4G, Wi-Fi) have limited uplink capacity support, making high-bitrate live streaming over such links fundamentally impossible. In this paper, we propose to let broadcasters (i.e., users who generate the video) upload crowdsourced video streams using aggregated network resources from multiple edge networks. There are several challenges in the proposal: First, how to design a framework that aggregates bandwidth from multiple edge networks? Second, how to make this framework transparent to today's crowdsourced live streaming services? Third, how to maximize the streaming quality for the whole system? We design a multi-objective and deployable bandwidth aggregation system BASS to address these challenges: (1) We propose an aggregation framework transparent to today's crowdsourced live streaming services, using an edge proxy box and aggregation cloud paradigm; (2) We dynamically allocate geo-distributed cloud aggregation servers to enable MPTCP (i.e., multi-path TCP), according to location and network characteristics of both broadcasters and the original streaming servers; (3) We maximize the overall performance gain for the whole system, by matching streams with the best aggregation paths.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube