Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tracing the Attention of Moving Citizens (1605.08492v2)

Published 27 May 2016 in cs.SI, cs.CY, and physics.soc-ph

Abstract: With the widespread use of mobile computing devices in contemporary society, our trajectories in the physical space and virtual world are increasingly closely connected. Using the anonymous smartphone data of $1 \times 105$ users in 30 days, we constructed the mobility network and the attention network to study the correlations between online and offline human behaviours. In the mobility network, nodes are physical locations and edges represent the movements between locations, and in the attention network, nodes are websites and edges represent the switch of users between websites. We apply the box-covering method to renormalise the networks. The investigated network properties include the size of box $l_B$ and the number of boxes $N(l_B)$. We find two universal classes of behaviours: the mobility network is featured by a small-world property, $N(l_B) \simeq e{-l_B}$, whereas the attention network is characterised by a self-similar property $N(l_B) \simeq l_B{-\gamma}$. In particular, with the increasing of the length of box $l_B$, the degree correlation of the network changes from positive to negative which indicates that there are two layers of structure in the mobility network. We use the results of network renormalisation to detect the community and map the structure of the mobility network. Further, we located the most relevant websites visited in these communities, and identified three typical location-based behaviours, including the shopping, dating, and taxi-calling. Finally, we offered a revised geometric network model to explain our findings in the perspective of spatial-constrained attachment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube