Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers (1605.08400v1)

Published 26 May 2016 in math.ST, stat.ML, and stat.TH

Abstract: We consider the problem of estimating a function defined over $n$ locations on a $d$-dimensional grid (having all side lengths equal to $n{1/d}$). When the function is constrained to have discrete total variation bounded by $C_n$, we derive the minimax optimal (squared) $\ell_2$ estimation error rate, parametrized by $n$ and $C_n$. Total variation denoising, also known as the fused lasso, is seen to be rate optimal. Several simpler estimators exist, such as Laplacian smoothing and Laplacian eigenmaps. A natural question is: can these simpler estimators perform just as well? We prove that these estimators, and more broadly all estimators given by linear transformations of the input data, are suboptimal over the class of functions with bounded variation. This extends fundamental findings of Donoho and Johnstone [1998] on 1-dimensional total variation spaces to higher dimensions. The implication is that the computationally simpler methods cannot be used for such sophisticated denoising tasks, without sacrificing statistical accuracy. We also derive minimax rates for discrete Sobolev spaces over $d$-dimensional grids, which are, in some sense, smaller than the total variation function spaces. Indeed, these are small enough spaces that linear estimators can be optimal---and a few well-known ones are, such as Laplacian smoothing and Laplacian eigenmaps, as we show. Lastly, we investigate the problem of adaptivity of the total variation denoiser to these smaller Sobolev function spaces.

Citations (75)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.