Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Domain Transfer Multi-Instance Dictionary Learning (1605.08397v1)

Published 26 May 2016 in cs.CV

Abstract: In this paper, we invest the domain transfer learning problem with multi-instance data. We assume we already have a well-trained multi-instance dictionary and its corresponding classifier from the source domain, which can be used to represent and classify the bags. But it cannot be directly used to the target domain. Thus we propose to adapt them to the target domain by adding an adaptive term to the source domain classifier. The adaptive function is a linear function based a domain transfer multi-instance dictionary. Given a target domain bag, we first map it to a bag-level feature space using the domain transfer dictionary, and then apply a the linear adaptive function to its bag-level feature vector. To learn the domain-transfer dictionary and the adaptive function parameter, we simultaneously minimize the average classification error of the target domain classifier over the target domain training set, and the complexities of both the adaptive function parameter and the domain transfer dictionary. The minimization problem is solved by an iterative algorithm which update the dictionary and the function parameter alternately. Experiments over several benchmark data sets show the advantage of the proposed method over existing state-of-the-art domain transfer multi-instance learning methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube