Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A General Family of Trimmed Estimators for Robust High-dimensional Data Analysis (1605.08299v2)

Published 26 May 2016 in stat.ML

Abstract: We consider the problem of robustifying high-dimensional structured estimation. Robust techniques are key in real-world applications which often involve outliers and data corruption. We focus on trimmed versions of structurally regularized M-estimators in the high-dimensional setting, including the popular Least Trimmed Squares estimator, as well as analogous estimators for generalized linear models and graphical models, using possibly non-convex loss functions. We present a general analysis of their statistical convergence rates and consistency, and then take a closer look at the trimmed versions of the Lasso and Graphical Lasso estimators as special cases. On the optimization side, we show how to extend algorithms for M-estimators to fit trimmed variants and provide guarantees on their numerical convergence. The generality and competitive performance of high-dimensional trimmed estimators are illustrated numerically on both simulated and real-world genomics data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.