Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Variance Reduced Riemannian Eigensolver (1605.08233v2)

Published 26 May 2016 in cs.LG and stat.ML

Abstract: We study the stochastic Riemannian gradient algorithm for matrix eigen-decomposition. The state-of-the-art stochastic Riemannian algorithm requires the learning rate to decay to zero and thus suffers from slow convergence and sub-optimal solutions. In this paper, we address this issue by deploying the variance reduction (VR) technique of stochastic gradient descent (SGD). The technique was originally developed to solve convex problems in the Euclidean space. We generalize it to Riemannian manifolds and realize it to solve the non-convex eigen-decomposition problem. We are the first to propose and analyze the generalization of SVRG to Riemannian manifolds. Specifically, we propose the general variance reduction form, SVRRG, in the framework of the stochastic Riemannian gradient optimization. It's then specialized to the problem with eigensolvers and induces the SVRRG-EIGS algorithm. We provide a novel and elegant theoretical analysis on this algorithm. The theory shows that a fixed learning rate can be used in the Riemannian setting with an exponential global convergence rate guaranteed. The theoretical results make a significant improvement over existing studies, with the effectiveness empirically verified.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)