Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Distributed Learning with Sparsity (1605.07991v1)

Published 25 May 2016 in stat.ML and cs.LG

Abstract: We propose a novel, efficient approach for distributed sparse learning in high-dimensions, where observations are randomly partitioned across machines. Computationally, at each round our method only requires the master machine to solve a shifted ell_1 regularized M-estimation problem, and other workers to compute the gradient. In respect of communication, the proposed approach provably matches the estimation error bound of centralized methods within constant rounds of communications (ignoring logarithmic factors). We conduct extensive experiments on both simulated and real world datasets, and demonstrate encouraging performances on high-dimensional regression and classification tasks.

Citations (144)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.