Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Distributed Learning with Sparsity (1605.07991v1)

Published 25 May 2016 in stat.ML and cs.LG

Abstract: We propose a novel, efficient approach for distributed sparse learning in high-dimensions, where observations are randomly partitioned across machines. Computationally, at each round our method only requires the master machine to solve a shifted ell_1 regularized M-estimation problem, and other workers to compute the gradient. In respect of communication, the proposed approach provably matches the estimation error bound of centralized methods within constant rounds of communications (ignoring logarithmic factors). We conduct extensive experiments on both simulated and real world datasets, and demonstrate encouraging performances on high-dimensional regression and classification tasks.

Citations (144)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.