Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automatic Open Knowledge Acquisition via Long Short-Term Memory Networks with Feedback Negative Sampling (1605.07918v1)

Published 25 May 2016 in cs.CL, cs.AI, and cs.NE

Abstract: Previous studies in Open Information Extraction (Open IE) are mainly based on extraction patterns. They manually define patterns or automatically learn them from a large corpus. However, these approaches are limited when grasping the context of a sentence, and they fail to capture implicit relations. In this paper, we address this problem with the following methods. First, we exploit long short-term memory (LSTM) networks to extract higher-level features along the shortest dependency paths, connecting headwords of relations and arguments. The path-level features from LSTM networks provide useful clues regarding contextual information and the validity of arguments. Second, we constructed samples to train LSTM networks without the need for manual labeling. In particular, feedback negative sampling picks highly negative samples among non-positive samples through a model trained with positive samples. The experimental results show that our approach produces more precise and abundant extractions than state-of-the-art open IE systems. To the best of our knowledge, this is the first work to apply deep learning to Open IE.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.